165 research outputs found

    Malleja ja menetelmiÀ puiden tilajÀrjestyksen analysoimiseksi.

    Get PDF

    The Multi-Source National Forest Inventory of Finland – methods and results 2013

    Get PDF
    This report presents the methods and results of the Finnish multi-source forest inventory corresponding to year 2013. In addition to field data, satellite images, digital map data and other georeferenced data were used. The main purpose of the article is to make multi-source forest inventory results available for the users and to help the users to understand the principles of the methods and advantages and limitations of the products. The field data originate from the 11th Finnish National Forest Inventory from years 2009 to 2013. The field data have been computationally updated to the date 31 July, 2013. The satellite images where from years 2012 – 2014. The basic features of the improved k-NN, ik-NN, estimation method are described. The results are presented by the regions of the Public Service unit of the Finnish Forest Centre and within the regions by municipalities, the boundaries as on 1.1.2014. The estimates are given, for example, for land areas, areas of tree species dominance, age, and development classes of stands and often separately for forests available for wood supply. The mean volume and total volume estimates are given in many different ways: by tree species and by timber assortments for forest land, and combined forest land and poorly productive forest land and also for forests available for wood supply, as well as by age and development classes. The biomass estimates are given, in addition to the total biomass estimates, by tree species groups in young thinning stands in which the first commercial thinning was proposed for the first 5-year period, separately for stem and bark and branches and foliage. The biomass estimates of mature forests are presented separately for branches, foliage and stem residuals, and stumps and large roots by tree species groups. These biomass estimates are given separately for land available for wood supply. All presented results can be employed in calculating forest resource estimates also for regions larger than municipalities. The error sources for the estimates as well as the reliability of the estimates are briefly discussed in Section 3.4.4 and Chapter 5.201

    The Multi-source National Forest Inventory of Finland - methods and results 2007

    Get PDF
    A paper in the series of the results of the multi-source national forest inventory.Layout: Sari ElomaaThis article presents the results of the Finnish multi-source forest inventory based on satellite images, digital map data and field data. The main purpose of the article is to make multi-source forest inventory results available for the foresters, and all the readers interested in forests and forest environment. The field data originates from the 10th Finnish National Forest Inventory from years 2005 to 2008 . The basic features of the employed improved k-NN, ik-NN, method are described. The results are presented by forestry centres and within forestry centres by municipalities. The estimates are given, for example, for land areas, areas of tree species dominance, age and development classes and often separately for forests available for wood supply. The mean volume and total volume estimates are given in many different ways: mean volumes by tree species and by timber assortments for forest land, poorly productive forest land and their combination and also for forests available for wood supply, as well as by age and development classes. The biomass estimates are given by tree species groups in young thinning stands in which first commercial thinning was proposed for the first 5-year-period, separately for stem and bark and branches and foliage. The biomass estimates of mature forests are presented separately for branches, foliage and stem residuals, and stumps and large roots by tree species groups. All biomass estimates are given separately for land available for wood supply. The presented results can be employed in calculating forest resource estimates also for regions larger than municipalities. The error sources for the estimates as well as the reliability of the estimates are briefly discussed in Section 3.2.3 and Chapter 5

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    Kainuun metsĂ€keskuksen alueen metsĂ€varat 1969–2001

    Get PDF
    MetsĂ€varatTĂ€ssĂ€ julkaisussa esitetÀÀn valtakunnan metsien yhdeksĂ€nteen inventointiin (VMI9) perustuvat Kainuun metsĂ€keskuksen alueen metsĂ€varatiedot ja niiden muutokset 1969–2001 sekĂ€ analysoidaan muutosten syitĂ€. LisĂ€ksi artikkelissa kuvataan yleispiirteet otantamenetelmĂ€stĂ€. Inventoinnin otantamenetelmÀÀ, maastomittauksia ja tuloslaskentaa kehitettiin yhdeksĂ€ttĂ€ inventointia varten. MenetelmĂ€ on kuvattu EtelĂ€-Pohjanmaan tulosjulkaisun yhteydessĂ€ (MetsĂ€tieteen aikakauskirja 2B/1998). Kainuussa tuli ensi kertaa uudelleen mitattavaksi pysyviĂ€ koealoja. Niiden aiheuttamat muutokset mittauksiin on kuvattu tĂ€ssĂ€ julkaisussa. §§ Metsien kĂ€yttö oli poikkeuksellisen voimakasta 1950-luvun lopulta 1980-luvun alkuun, mutta samalla metsien hoitoa tehostettiin. Puuvaranto on noussut vuoden 1969 inventoinnin 113 milj. m3:stĂ€ 142 milj. m3:iin. Puuston vuotuinen kasvu on samaan aikaan noussut 2,8 milj. m3:stĂ€ 6,0 milj. m3:iin. Metsien uudistaminen mĂ€nnylle on lisĂ€nnyt mĂ€ntyvaltaisten metsien alan lĂ€hes 80 %:iin metsĂ€maan alasta. Samalla mĂ€nnyn kasvu on noussut. Kuusen kasvu on saman suuruinen kuin 5. inventoinnissa. Kahdeksannen inventoinnin jĂ€lkeen kaikkien puulajien varannot ja kasvut ovat nousseet. §§ Voimakkaiden hakkuiden jĂ€lkeen metsien ikĂ€- ja kehitysluokkarakenne poikkeavat edelleen tavoitejakaumista. Nuoria kasvatusmetsiĂ€ on enemmĂ€n ja varttuneita kasvatusmetsiĂ€ vĂ€hemmĂ€n kuin pitkĂ€n ajan tasaisten hakkuumahdollisuuksien mukaan niitĂ€ tulisi olla. Hakkuut painottuvat siten tulevalla 10-vuotiskaudella ensiharvennuksiin ja jonkin verran vielĂ€ uudistushakkuisiin. MetsĂ€nhoidollisin perustein voitaisiin hakkuita tehdĂ€ 900 000 ha:lla. NĂ€istĂ€ ensiharvennuksia on 303 000 ha. §§ MetsĂ€lain tarkoittamia erityisen tĂ€rkeitĂ€ elinympĂ€ristöjĂ€ on VMI:n mukaan 0,8 % yhdistetystĂ€ metsĂ€-, kitu- ja joutomaan alasta. Kuollutta puuta on metsĂ€- ja kitumaalla keskimÀÀrin 6,2 m3/ha, mikĂ€ on suurin VMI9:ssa tĂ€hĂ€n mennessĂ€ mitatuista metsĂ€keskuksittaisista keskiarvoista. Alueen metsĂ€t tĂ€yttĂ€vĂ€t ne metsĂ€sertifioinnin kriteerit, joissa tietolĂ€hteenĂ€ on VMI, edellyttĂ€en, ettĂ€ vuotuista taimikonhoidon alaa lisĂ€tÀÀn inventointia edeltĂ€neen viiden vuoden keskimÀÀrĂ€isestĂ€ alasta

    Valtakunnan metsien 8. inventoinnin menetelmĂ€ ja tulokset metsĂ€keskuksittain Pohjois-Suomessa 1992–94 sekĂ€ tulokset EtelĂ€-Suomessa 1986–92 ja koko maassa 1986–94

    Get PDF
    MetsÀvaratTÀssÀ julkaisussa esitetÀÀn valtakunnan metsien kahdeksannen inventoinnin (VMI8) Pohjois-Suomen otanta-asetelman suunnittelussa kÀytetty menetelmÀ, johdettu otanta-asetelma, maastomittaukset ja tuloslaskennan menetelmÀ.VMI8:n mukaiset metsÀvaratiedot esitetÀÀn Pohjois-Suomen alueelle metsÀkeskuksittain 1.1.1998 voimaan tulleen metsÀkeskusjaon mukaan. Koko maan VMI8:n tulokset esitetÀÀn erikseen EtelÀ- ja Pohjois-Suomelle. §§ VMI8:n Pohjois-Suomen inventoinnin suunnittelussa kÀytettiin otannan simulointia satelliittikuvista ja maastomittauksista johdetun puuston tilavuuskartan avulla. Viidesosa koealoista mitattiin Pohjois-Suomessa pysyvinÀ. Taimikoiden puuston kuvausta muutettiin aikaisempaa monipuolisemmaksi metsien tulevien kehitysvaihtoehtojen simuloimiseksi. §§ Pohjois-Suomen metsÀ- ja kitumaan elÀvÀn puuston kuorellinen kannon ylÀpuolinen runkotilavuus oli VMI8:n mukaan 594 milj. m3, kun se VMI7:n mukaan oli samalla alueella 517 milj. m3. KÀyttökelpoista kuollutta puuta oli lisÀksi 25 milj. m3. Koko maassa elÀvÀn puuston runkotilavuus oli 1 890 milj. m3 ja kÀyttökelpoisen kuolleen puun tilavuus 35 milj. m3. Kuorellisen runkopuun keskimÀÀrÀinen vuotuinen kasvu mittausta edeltÀneenÀ viitenÀ tÀytenÀ kasvukautena oli noussut Pohjois-Suomessa VMI7:n 16,5 milj. m3:stÀ VMI8:ssa 19,2 milj. m3:iin. Koko maan puuston vastaava kasvu oli VMI8:n mukaan 77,7 milj. m3. Kolme neljÀnnestÀ Pohjois-Suomen metsÀmaan metsistÀ oli mÀntyvaltaisia. Taimikonhoitoa tai perkausta oli ehdotettu Pohjois-Suomessa inventointia seuraavalle 10-vuotiskaudelle 950 000 hehtaarille ja ensiharvennuksia 830 000 hehtaarille. Koko maan vastaavat luvut olivat 2,43 ja 2,37 milj. hehtaaria

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    A constructive review of the State Forest Inventory in the Russian Federation

    Get PDF
    The State Forest Inventory (SFI) in the Russian Federation is a relatively new project that is little known in the English-language scientific literature. Following the stipulations of the Forest Act of 2006, the first SFI sample plots in this vast territory were established in 2007. The 34 Russian forest regions were the basic geographical units for all statistical estimates and served as a first-level stratification, while a second level was based on old inventory data and remotely sensed data. The sampling design was to consist of a simple random sample of 84,700 circular 500m(2) sample plots over forest land. Each sample plot consists of three nested concentric circular subplots with radii of 12.62, 5.64 and 2.82m and additional subplots for assessing and describing undergrowth, regeneration and ground vegetation. In total, 117 variables were to be measured or assessed on each plot.Although field work has begun, the methodology has elicited some criticism. The simple random sampling design is less efficient than a systematic design featuring sample plot clusters and a mix of temporary and permanent plots. The second-level stratification is mostly ineffective for increasing precision. Qualitative variables, which are not always essential, are dominant, while important quantitative variables are under-represented. Because of very slow progress, in 2018 the original plan was adjusted by reducing the number of permanent sample plots from 84,700 to 68,287 so that the first SFI cycle could be completed by 2020.Peer reviewe

    HĂ€meen-Uudenmaan metsĂ€keskuksen alueen metsĂ€varat 1965–99

    Get PDF
    MetsĂ€varatTĂ€ssĂ€ julkaisussa esitetÀÀn valtakunnan metsien yhdeksĂ€nteen inventointiin (VMI9) perustuvat HĂ€meen-Uudenmaan metsĂ€keskuksen alueen metsĂ€varatiedot ja niiden muutokset 1965–1999 sekĂ€ analysoidaan muutosten syitĂ€. LisĂ€ksi artikkelissa kuvataan yleispiirteet otantamenetelmĂ€stĂ€. Inventoinnin otantamenetelmÀÀ, maastomittauksia ja tuloslaskentaa kehitettiin yhdeksĂ€ttĂ€ inventointia varten. MenetelmĂ€ on kuvattu EtelĂ€-Pohjanmaan tulosjulkaisun yhteydessĂ€ (Tomppo ym. 1998). HĂ€meen-Uudenmaan metsĂ€keskuksen alue muuttui vuonna 1996, kun metsĂ€lautakunnat muutettiin metsĂ€keskuksiksi. TĂ€hĂ€n julkaisuun laskettiin uudelleen nykyisen metsĂ€keskuksen alueen tulokset viidennestĂ€ inventoinnista eli vuodesta 1965 lĂ€htien. HĂ€meen-Uudenmaan alueella ovat puuston keskitilavuus, keskikasvu ja puuston kasvuprosentti maan korkeimpia. MetsĂ€- ja kitumaalla keskitilavuus on 153 m3/ha ja keskikasvu 6,6 m3/ha/v. Kuusen osuus puuvarannosta on niinikÀÀn maan korkein 54 %. §§ Metsien kĂ€sittelytapojen muutos nosti puuston kasvua 1970-luvun alusta 1980-luvun puolivĂ€liin. Poistuman jÀÀtyĂ€ entiselle tasolle myös puuvaranto alkoi lisÀÀntyĂ€. Se on noussut 1960-luvun puolen vĂ€lin 106 milj. m3:sta 146 milj. m3:iin. Puuston vuotuinen kasvu on samaan aikaan noussut 4,9 milj. m3:sta 6,3 milj. m3:iin. Kahdeksannen inventoinnin jĂ€lkeen kasvu ei ole enÀÀ noussut, vaan pĂ€invastoin laskenut lievĂ€sti. Kuusen kasvu on laskenut ja muiden puulajien kasvut ovat nousseet. Hakkuut ovat 1990-luvulla vilkastuneet, mutta viiden inventointia edeltĂ€neen vuoden poistuma on edelleen nĂ€iden vuosien keskikasvua pienempi. Kuusen poistuma on aivan viime vuosina ylittĂ€nyt sen kasvun. Uudistuskypsien metsien ala on samalla laskenut ja metsien kehitysluokkajakauma on nyt lĂ€hellĂ€ suositusten mukaista. Metsien metsĂ€nhoidollinen tila ei ole huonontunut edellisestĂ€ inventoinnista. MyöskÀÀn metsien uudistamisen laiminlyönnit eivĂ€t ole lisÀÀntyneet. MetsĂ€lain tarkoittamia erityisen tĂ€rkeitĂ€ elinympĂ€ristöjĂ€ on VMI:n mukaan 0,6 % ja kaikkia metsien monimuotoisuuden kannalta tĂ€rkeitĂ€ habitaatteja, avainbiotooppeja, 11 % yhdistetystĂ€ metsĂ€-, kitu- ja joutomaan alasta. Valtakunnan metsien inventointiin perustuvat metsĂ€sertifioinnin kriteerit ovat pÀÀosin toteutuneet
    • 

    corecore